Theseus

Meta Al, FAIR team

Jan 15, 2024

GETTING STARTED

1 Getting started 3
1.1 Installation e e e e e e e 3
1.2 Tuatorials L e e e e e e 4
2 Core Module 5
2.1 Objective e e e e e 5
2.2 CostFunction e e e e 5
2.3 Variable e e e e 5
2.4 Cost Weight o o e e e e e e e e e 5
2.5 Reference L e e e e 5
3 Embodied Module 11
4 Geometry Module 13
5 Optimizer Module 15
6 Utilities Module 17
Index 19

Theseus

Theseus is a library for differentiable nonlinear optimization built on PyTorch to support constructing various problems
in robotics and vision as end-to-end differentiable architectures.

GETTING STARTED 1

Theseus

2 GETTING STARTED

CHAPTER
ONE

GETTING STARTED

1.1 Installation

1.1.1 Prerequisites

* We strongly recommend you install theseus in a venv or conda environment with Python 3.8-3.10.

» Theseus requires torch installation. To install for your particular CPU/CUDA configuration, follow the instruc-
tions in the PyTorch website.

» For GPU support, Theseus requires nvce to compile custom CUDA operations. Make sure it matches the version
used to compile pytorch with nvcc --version. If not, install it and ensure its location is on your system’s
$PATH variable.

* Theseus also requires suitesparse, which you can install via:
— sudo apt-get install libsuitesparse-dev (Ubuntu).

— conda install -c conda-forge suitesparse (Mac).

1.1.2 Installing

pypi

pip install theseus-ai

We currently provide wheels with our CUDA extensions compiled using CUDA 11.6 and Python 3.10. For other CUDA
versions, consider installing from source or using our build script.

Note that pypi installation doesn’t include our experimental Theseus Labs. For this, please install from source.
From source

The simplest way to install Theseus from source is by running the following (see further below to also include BaSpa-
Cho)

git clone https://github.com/facebookresearch/theseus.git
pip install -e .
python -m pytest tests

If you are interested in contributing to theseus, instead install using

https://pytorch.org/get-started/locally/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://people.engr.tamu.edu/davis/suitesparse.html
https://github.com/facebookresearch/theseus/blob/main/build_scripts/build_wheel.sh
https://github.com/facebookresearch/theseus/tree/main/theseus/labs

Theseus

pip install -e ".[dev]"

and follow the more detailed instructions in CONTRIBUTING.

Installing BaSpaCho extensions from source By default, installing from source doesn’t include our BaSpaCho sparse
solver extension. For this, follow these steps:

1. Compile BaSpaCho from source following instructions here. We recommend using flags -DBLA_STATIC=ON
-DBUILD_SHARED_LIBS=OFF.

2. Run

git clone https://github.com/facebookresearch/theseus.git && cd theseus BASPA-
CHO_ROOT_DIR=<path/to/root/baspacho/dir> pip install -e .

where the BaSpaCho root dir must have binaries in the subdirectory build.

Unit tests

With dev installation, you can run unit tests via

python -m pytest tests

By default, unit tests include tests for our CUDA extensions. You can add the option -m “not cudaext” to skip them
when installing without CUDA support. Additionally, the tests for sparse solver BaSpaCho are automatically skipped
when its extlib is not compiled.

1.2 Tutorials

See tutorials and examples to learn about the API and usage.

4 Chapter 1. Getting started

https://github.com/facebookresearch/theseus/blob/main/CONTRIBUTING.md
https://github.com/facebookresearch/baspacho
https://github.com/facebookresearch/theseus.git
https://github.com/facebookresearch/theseus/blob/main/tutorials/
https://github.com/facebookresearch/theseus/blob/main/examples/

CHAPTER
TWO

2.1 Objective

CORE MODULE

An objective function to optimize (see theseus.Objective).

2.2 Cost Function

A term in the objective function as a function of one or more Variable objects.

2.3 Variable

A variable in the optimization problem. Variable objects are named wrappers for torch tensors.

2.4 Cost Weight

A weight for cost functions.

2.5 Reference

theseus.Objective

An objective function to optimize.

theseus.Objective.add

Adds a cost function to the objective.

theseus.Objective.error

Evaluates the error vector.

theseus.Objective.error_metric

Aggregates all cost function errors into a (batched)
scalar objective.

theseus.Objective.update

Updates all variables with the given input tensor dictio-
nary.

theseus.Objective.retract_vars_sequence

Retracts an ordered sequence of variables.

theseus.CostFunction

A cost function in a differentiable optimization problem.

theseus.Variable

A variable in a differentiable optimization problem.

Theseus

2.5.1 theseus.Objective

class theseus.Objective(dtype: Optional[dtype] = None, error_metric_fn: Optional[ErrorMetric] = None,
__allow_mixed_optim_aux_vars__: bool = False)

An objective function to optimize.

Defines the structure of an optimization problem in Theseus by aggregating cost functions into a single
objective. The cost functions that comprise the final objective function are specified via the add() method.
Cost functions are responsible for registering their optimization and auxiliary variables, which are automatically
added to the objective’s list of variables when a cost function is added. Importantly, optimization variables must
be instances of Manifold subclasses, while auxiliary variables can be instances of any Variable class.

Parameters

» dtype (optional[torch.dtype]) — the data type to use for all variables. If None is
passed, then uses torch.get_default_dtype().

» error_metric_fn (optional[callable])— areference to a Python function used to ag-
gregate cost functions into a single objective. Defaults to using the sum of squared costs. If
given, it must receive a single tensor as input. The objective will use it to pass the batched
concatenated error vector, will all cost function errors concatenated.

__init__(dtype: Optional[dtype] = None, error_metric_fn: Optional[ErrorMetric] = None,
__allow_mixed_optim_aux_vars__: bool = False)

6 Chapter 2. Core Module

Theseus

Methods

add(cost_function) Adds a cost function to the objective.

copy() Creates a new copy of this objective.

dim() Returns the dimension of the error vector.

erase(name) Removes a cost function from the objective given its
name

error([input_tensors, also_update]) Evaluates the error vector.

error_metric([input_tensors, also_update]) Aggregates all cost function errors into a (batched)
scalar objective.

get_aux_var(name) Returns a reference to the auxiliary variable with the
given name.

get_cost_function(name) Returns a reference to the cost function with the given
name.

get_functions_connected_to_aux_var(aux_var) Gets a list of functions that depend on a given auxil-
iary variable.

get_functions_connected_to_optim_var(variabl€yets a list of functions that depend on a given opti-
mization variable.

get_optim_var(name) Returns a reference to the optimization variable with
the given name.

has_aux_var(name) Checks if an auxiliary variable is used in the objec-
tive.

has_cost_function(name) Checks if a cost function with the given name is in
the objective.

has_optim_var(name) Checks if an optimization variable is used in the ob-
jective.

retract_vars_sequence(delta, ordering[, ...]) Retracts an ordered sequence of variables.

size() Returns the number of cost functions and variables in
the objective.

size_aux_vars() Returns the number of auxiliary variables in the ob-
jective.

size_cost_functions() Returns the number of cost functions in the objective.

size_variables() Returns the number of optimization variables in the
objective.

to(*args, **kwargs) Applies torch.Tensor.to() to all cost functions in the
objective.

update([input_tensors, batch_ignore_mask, ...]) Updates all variables with the given input tensor dic-
tionary.

2.5.2 theseus.Objective.add

Objective.add(cost_function: CostFunction)

Adds a cost function to the objective.

When a cost function is added, this method goes over its list of registered optimization and auxiliary variables,
and adds any of them to the objective’s list of variables, as long as a variable with th4 same name hasn’t been
added before. If any of the cost function’s variables has the same as that of a variable previously added to the
objective, the method checks that they are referring to the same theseus. Variable. If this is not the case, an
error will be triggered. In other words, the objective expects to have a unique mapping between variable names
and objects.

The same procedure is followed for the cost function’s weight.

2.5. Reference 7

Theseus

Parameters
cost_function (theseus.CostFunction) — the cost function to be added to the objective.

Warning: If a cost weight registers optimization variables that are not used in any theseus. CostFunction
objects, these will NOT be added to the set of the objective’s optimization variables; they will be kept in a
separate container. The update () method will check for this, and throw a warning whenever this happens.
Also note that Theseus always considers cost weights as constants, even if their value depends on variables
declared as optimization variables.

2.5.3 theseus.Objective.error

Objective.error (input_tensors: Optional[Dict[str, Tensor]] = None, also_update: bool = False) — Tensor

Evaluates the error vector.
Parameters

e input_tensors (Dict[str, torch.Tensor], optional) — if given, it must be a dic-
tionary mapping variable names to tensors; if a variable with the given name is registered
in the objective, its tensor will be replaced with the one in the dictionary (possibly perma-
nently, depending on the value of also_update). Defaults to None, in which case the error
is evaluated using the current tensors stored in all registered variables.

* also_update (bool, optional) - if True, and input_tensors is given, the modified
variables are permanently updated with the given tensors. Defaults to False, in which case
the variables are reverted to the previous tensors after the error is evaluated.

Returns

a tensor of shape (batch_size x error_dim), with the
concatenation of all cost functions error vectors. The order corresponds to the order in which
cost functions were added to the objective.

Return type
torch.Tensor

2.5.4 theseus.Objective.error_metric

Objective.error_metric(input_tensors: Optional[Dict[str, Tensor]] = None, also_update: bool = False) —
Tensor

Aggregates all cost function errors into a (batched) scalar objective.
Parameters

» input_tensors (Dict[str, torch.Tensor], optional) — if given, it must be a dic-
tionary mapping variable names to tensors; if a variable with the given name is registered
in the objective, its tensor will be replaced with the one in the dictionary (possibly perma-
nently, depending on the value of also_update). Defaults to None, in which case the error
is evaluated using the current tensors stored in all registered variables.

* also_update (bool, optional) - if True, and input_tensors is given, the modified
variables are permanently updated with the given tensors. Defaults to False, in which case
the variables are reverted to the previous tensors after the error is evaluated.

Returns

8 Chapter 2. Core Module

Theseus

a tensor of shape (batch_size,) with the scalar value of
the objective function.

Return type
torch.Tensor

2.5.5 theseus.Objective.update

Objective.update (input_tensors: Optional[Dict/str, Tensor]] = None, batch_ignore_mask: Optional[Tensor] =
None, _update_vectorization: bool = True)

Updates all variables with the given input tensor dictionary.

The behavior of this method can be summarized by the following pseudocode:

for name, tensor in input_tensors.items():
var = self.get_var_with_name(name) .update(tensor)
check_batch_size_consistency(self.all_variables)

Any variables not included in the input tensors dictionary will retain their current tensors.

After updating, the objective will modify its batch size property according to the resulting tensors. Therefore,
all variable tensors must have a consistent batch size (either 1 or the same value as the others), after the update
is completed. Note that this includes variables not referenced in the input_tensors dictionary.

Parameters

» input_tensors (Dict[str, torch.Tensor], optional) — if given, it must be a dic-
tionary mapping variable names to tensors; if a variable with the given name is registered in
the objective, its tensor will be replaced with the one in the dictionary (possibly permanently,
depending on the value of also_update). Defaults to None, in which case nothing will be
updated. In both cases, the objective will resolve the batch size with whatever tensors are
stored after updating.

* batch_ignore_mask (torch.Tensor, optional) — an optional tensor of shape
(batch_size,) of boolean type. Any True values indicate that this batch index should remain
unchanged in all variables. Defaults to None.

Raises
ValueError - if tensors with inconsistent batch dimension are given.

2.5.6 theseus.Objective.retract_vars_sequence

Objective.retract_vars_sequence(delta: Tensor, ordering: Iterable[Manifold], ignore_mask:
Optional[Tensor] = None, force_update: bool = False)

Retracts an ordered sequence of variables.

The behavior of this method can be summarized by the following pseudocode:

for var in ordering:
var.retract(delta[var_idx])

This function assumes that delta is constructed as follows:

delta = torch.cat([delta_vl, delta_v2, ..., delta_vn], dim=-1)

For an ordering [vl v2 ... vn], and where delta_vi.shape = (batch_size, vi.dof())

2.5. Reference 9

Theseus

Parameters
* delta (torch. Tensor) — the tensor to use for retract operation.

e ordering (Iterable[Manifold]) — an ordered iterator of variables to retract. The order
must be consistent with delta as explained above.

» ignore_mask (torch.Tensor, optional) — An ignore mask for batch indices as in
update (). Defaults to None.

» force_update (bool, optional) - if True, disregards the ignore_mask. Defaults to
False.

2.5.7 theseus.CostFunction

class theseus.CostFunction(cost_weight: CostWeight, name: Optional(str] = None)
A cost function in a differentiable optimization problem.

__init__(cost_weight: CostWeight, name: Optional[str] = None)

2.5.8 theseus.Variable

class theseus.Variable (tensor: Tensor, name: Optional[str] = None)

A variable in a differentiable optimization problem.

__init__(tensor: Tensor, name: Optional[str] = None)

10 Chapter 2. Core Module

CHAPTER
THREE

EMBODIED MODULE

11

Theseus

12 Chapter 3. Embodied Module

CHAPTER
FOUR

GEOMETRY MODULE

13

Theseus

14 Chapter 4. Geometry Module

CHAPTER
FIVE

OPTIMIZER MODULE

15

Theseus

16 Chapter 5. Optimizer Module

CHAPTER
SIX

UTILITIES MODULE

17

Theseus

18 Chapter 6. Utilities Module

Symbols

__init__Q (theseus.CostFunction method), 10
__init__Q (theseus.Objective method), 6
__init__Q (theseus.Variable method), 10

A

add Q) (theseus.Objective method), 7

C

CostFunction (class in theseus), 10

E

error () (theseus.Objective method), 8
error_metric() (theseus.Objective method), 8

O

Objective (class in theseus), 6

R

retract_vars_sequence() (theseus.Objective

method), 9

U

update () (theseus.Objective method), 9

Vv

Variable (class in theseus), 10

INDEX

19

	Getting started
	Installation
	Prerequisites
	Installing
	pypi
	From source
	Unit tests

	Tutorials

	Core Module
	Objective
	Cost Function
	Variable
	Cost Weight
	Reference
	theseus.Objective
	theseus.Objective.add
	theseus.Objective.error
	theseus.Objective.error_metric
	theseus.Objective.update
	theseus.Objective.retract_vars_sequence
	theseus.CostFunction
	theseus.Variable

	Embodied Module
	Geometry Module
	Optimizer Module
	Utilities Module
	Index

